A Novel Hepatocellular Carcinoma Image Classification Method Based on Voting Ranking Random Forests
نویسندگان
چکیده
This paper proposed a novel voting ranking random forests (VRRF) method for solving hepatocellular carcinoma (HCC) image classification problem. Firstly, in preprocessing stage, this paper used bilateral filtering for hematoxylin-eosin (HE) pathological images. Next, this paper segmented the bilateral filtering processed image and got three different kinds of images, which include single binary cell image, single minimum exterior rectangle cell image, and single cell image with a size of n⁎n. After that, this paper defined atypia features which include auxiliary circularity, amendment circularity, and cell symmetry. Besides, this paper extracted some shape features, fractal dimension features, and several gray features like Local Binary Patterns (LBP) feature, Gray Level Co-occurrence Matrix (GLCM) feature, and Tamura features. Finally, this paper proposed a HCC image classification model based on random forests and further optimized the model by voting ranking method. The experiment results showed that the proposed features combined with VRRF method have a good performance in HCC image classification problem.
منابع مشابه
Tags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملFuzzy Neighbor Voting for Automatic Image Annotation
With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...
متن کاملA novel three-stage distance-based consensus ranking method
In this study, we propose a three-stage weighted sum method for identifying the group ranks of alternatives. In the first stage, a rank matrix, similar to the cross-efficiency matrix, is obtained by computing the individual rank position of each alternative based on importance weights. In the second stage, a secondary goal is defined to limit the vector of weights since the vector of weights ob...
متن کاملFeature ranking for multi-label classification using predictive clustering trees
In this work, we present a feature ranking method for multilabel data. The method is motivated by the the practically relevant multilabel applications, such as semantic annotation of images and videos, functional genomics, music and text categorization etc. We propose a feature ranking method based on random forests. Considering the success of the feature ranking using random forest in the task...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2015